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Abstract

We present high resolution numerical simulations of incompressible two-dimensional flows in tube bundles, staggered

or in-line, as encountered in heat exchangers or chemical reactors. We study the time evolution of several flows in arrays

of cylinders, squares and double-cruciform shaped tubes at a Reynolds number of 200. The numerical scheme is either

based on adaptive wavelet or Fourier pseudo-spectral space discretization with adaptive time stepping. A volume

penalization method is used to impose no-slip boundary conditions on the tubes. Lift and drag coefficients for the

different geometries of tube bundles are compared and perspectives for fluid–structure interaction are given.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The numerical simulation of turbulent flows in complex geometries is a key challenge in computational fluid

dynamics (CFD). Grid generation and turbulence modelling near the wall are crucial, especially to predict lift and drag

and to control of the flow. A suitable approach is the volume penalization method which has been introduced by Arquis

and Caltagirone (1984) to compute flows in porous media, and generalized by Angot et al. (1999) to flows past

obstacles. In the latter, walls or solid obstacles are modelled as porous media whose porosity tends to zero. They also

give a mathematical proof of the convergence towards the solution of Navier–Stokes equations with no-slip boundary

conditions. In the volume penalization method the Navier–Stokes equations are modified by adding a Darcy force.

Fluid regions are thus considered as fully permeable, and solid regions as almost impermeable. The geometry of the flow

is taken into account using a spatially varying permeability, which enables an easy implementation and furthermore

allows obstacles to move and to interact with the fluid, as it is the case for flow-induced vibrations. The penalization

method has been applied using finite difference/volume schemes (Angot et al., 1999; Khadra et al., 2000), pseudo-

spectral methods (Forestier et al., 2000; Kevlahan and Ghidaglia, 2001; Schneider, 2004) and recently adaptive wavelet
e front matter r 2005 Elsevier Ltd. All rights reserved.
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methods (Schneider and Farge, 2002; Farge and Schneider, 2001). The latter scheme automatically adapts the spatial

grid not only to the evolution of the flow, but also to the geometry of walls or bluff bodies (Schneider and Farge, 2002).

The paper is organized as follows. First, we present the penalization method together with the numerical schemes,

i.e., Fourier and adaptive wavelet discretizations, used to solve the penalized Navier–Stokes equations. We then study

several applications to tube bundles, as encountered in heat exchangers, static mixers and chemical reactors. We

consider either cylindrical, square, or double-cruciform shaped cross-sections, for either in-line or staggered

arrangements. We compute the drag and lift coefficients for different geometries, and discuss the influence of the

angle of attack of the flow. Finally, we give some conclusions and perspectives for three-dimensional flows.

2. Volume penalization and numerical discretization

2.1. Penalized equations

The volume penalization method has been proposed by Arquis and Caltagirone (1984). It is based on the physical

idea which consists in modelling solid walls or obstacles as porous media whose porosity tends to zero. The geometry of

the flow is described by a mask function wðxÞ which is equal to unity inside the solid regions and zero elsewhere.

Obstacles which move or with time-varying shape can be taken into account by simply using a time-dependent mask

function. It is hence particularly suited to compute fluid–structure interaction. The incompressible Navier–Stokes

equations are modified by adding a forcing term containing the mask function:

qtuZ þ uZ � ruZ þ rpZ � nr2uZ ¼ �
1

Z
wOs

ðuZ � upðtÞÞ,

r � uZ ¼ 0, ð1Þ

where uZðx; tÞ is the flow velocity, pZðx; tÞ the pressure, upðtÞ the obstacle velocity, n the kinematic viscosity, Z the porosity
which tends to zero and where the density is normalized to 1. The above equations are completed with a suitable initial

condition and periodic boundary conditions. The mask function is

wOs
ðxÞ ¼

1 for x 2 Os;

0 elsewhere;

(
(2)

where Os denotes the set of solid obstacles, including their boundaries. For Z�!0 the flow evolution is governed by the

Navier–Stokes equation in the fluid regions, and by Darcy’s law, i.e., velocity is proportional to pressure gradient, in

solid regions. Angot et al. (1999) have proven that the above equations converge towards the Navier–Stokes equations

with no-slip boundary conditions, the order of convergence being Z3=4 inside the obstacle and Z1=4 elsewhere. In

numerical simulations one finds a convergence of order Z, as reported by Angot et al. (1999) and Kevlahan and

Ghidaglia (2001).

The hydrodynamic forces F exerted by the flow on the obstacle, i.e., drag and lift, are simply computed by integrating

the penalized velocity over the obstacle volume (Angot et al., 1999):

F ¼ lim
Z!0

Z
Os

rpZ dx ¼ � lim
Z!0

1

Z

Z
Os

uZ dx ¼

Z
qOs

sðu; pÞ � nf dg, (3)

where Os is the obstacle volume, qOs its boundary, n its outer normal, and sðu; pÞ ¼ 1=2nðruþ ðruÞtÞ � pI the stress

tensor. Hence, the lift and drag forces on the obstacle, i.e., forces parallel and perpendicular to the free-stream velocity

of the flow, are easy to compute as volume integrals instead of contour integrals.

For two-dimensional flows the vorticity–velocity formulation is preferred, therefore we take the curl of Eq. (1) and get

qtoZ þ ðuZ þU1Þ � roZ � nr2oZ þr�
1

Z
wOs

ðuZÞ � upðtÞ

� �
¼ 0, (4)

where o ¼ r� u denotes the vorticity and U1 ¼ limjxj�!1 uðxÞ the free-stream velocity.

2.1.1. Fluid–structure interaction

Following Khalak and Williamson (1999), the fluid–structure interaction can be modelled by an ordinary differential

equation for the position of the obstacle’s centre of mass xp:

m
d2xp

dt2
þ C

dxp

dt
þ Kxp ¼ F, (5)
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where m is the obstacle mass, C the mechanical damping and K the spring constant. Note that F is the fluid force (3) and

dxp=dt ¼ up the velocity of the obstacle.
2.2. Numerical discretization

To solve the penalized Navier–Stokes equations, we employ either a classical Fourier pseudo-spectral method

(Canuto et al., 1988; Kevlahan and Ghidaglia, 2001; Schneider, 2004), or an adaptive wavelet scheme (Fröhlich and

Schneider, 1997; Schneider and Farge, 2002). We now describe both methods.
2.2.1. Fourier pseudo-spectral method

Fourier pseudo-spectral discretizations are classical schemes in CFD, which are highly accurate for flows with

periodic boundary conditions (Canuto et al., 1988). Eq. (4) is transformed into Fourier space in order to compute the

spatial derivatives and to evolve the vorticity field in time. Terms containing products, i.e., the convection and

penalization terms, are calculated by collocation in physical space. The vorticity field and the velocity are represented as

Fourier series:

oðx; tÞ ¼
X
k2Z2

boðk; tÞ expðik � xÞ , (6)

where the Fourier transform of o is defined as

boðk; tÞ ¼ 1

4p2

Z
oðx; tÞ expð�ik � xÞdx (7)

with the wavevector k ¼ ðkx; kyÞ. The Fourier discretization is uniform in space, and Eq. (6) is truncated at kx ¼ �Nx=2
and kx ¼ Nx=2þ 1, ky ¼ �Ny=2 and ky ¼ Ny=2þ 1, where Nx and Ny are the number of grid points in x and y

direction, respectively. The gradient of o is computed by multiplying bo with ik, the Laplacian by multiplying with jkj2.

The velocity u induced by the vorticity o is reconstructed in Fourier space using Biot–Savart’s law,

uðx; tÞ ¼
X

k2Z2 ;ka0

ik?

jkj2
boðk; tÞ expðik � xÞ, (8)

where k? ¼ ð�ky; kxÞ.

The convection term u � ro and the penalization term r � ½ð1=ZÞwOs
ðu� upðtÞÞ� are evaluated by the pseudo-spectral

technique using collocation in physical space. To avoid aliasing errors, i.e., the production of small scales due to the

nonlinear terms which are not resolved on the grid, we de-aliase at each time step by truncating the Fourier coefficients

using the 2
3
rule, i.e.,

boðkÞ ¼ boðkÞ for
3kx

2Nx

� �2

þ
3ky

2Ny

� �2

o1;

0 for
3kx

2Nx

� �2

þ
3ky

2Ny

� �2

X1:

8>>>><>>>>:
We use Temperton’s fast Fourier transform which has a complexity of order N log2 N, with N ¼ NxNy.

For the time discretization we use a semi-implicit scheme with adaptive time-stepping as proposed by Schneider

(2004). The linear diffusion term is discretized implicitly using exact time integration, since the Laplace operator is

diagonal in Fourier space, and hence no linear system has to be solved. The remaining terms are discretized explicitly

using second-order Adams–Bashforth extrapolation. This avoids the solution of nonlinear equations; nevertheless it

implies a CFL condition, i.e., the maximum size of the time step is limited for stability reasons. However, the semi-

implicit discretization proposed here improves the stability limit with respect to purely explicit schemes.

For the time step control we compute in each time step n the maximal r.m.s velocity at each grid point,

umax ¼ maxx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuðxÞÞ2 þ ðvðxÞÞ2

q
(9)

and the new time step is

Dtnþ1 ¼ CDx=umax,
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with the spatial grid size Dx ¼ minðLx=Nx;Ly=NyÞ, where Lx and Ly denote the length of the domain in x and y

directions, respectively, and Co1 is the CFL constant.

2.2.2. Adaptive wavelet method

As adaptive schemes dynamically adapt the spatial grid at each time step, we first discretize Eq. (4) in time using semi-

implicit finite differences, i.e., Euler–backwards for the viscous term and Adams–Bashforth extrapolation for the

nonlinear term, which are both second order.

The resulting elliptic problem to be solved at each time step is

ðgI � nr2Þonþ1 ¼
4

3
gon �

1

3
gon�1 � r � ðo% u%Þ � r �

1

Z
w ðu% � upÞ

� �
, (10)

where o% ¼ 2on � on�1 and u% ¼ 2 un � un�1 þU1, with g ¼ 3=ð2DtÞ and I the identity matrix.

For the space discretization we use a Petrov–Galerkin scheme. The vorticity is developed into a set of trial functions

and, to minimize the weighted residual of (10), one requires that the projection onto a space of test functions vanishes.

As space of trial functions we employ a two-dimensional periodic multiresolution analysis (MRA) (Farge, 1992) and

develop on at time step n into an orthonormal wavelet series

onðx; yÞ ¼
X
l

honcliclðx; yÞ, (11)

with the multi-index l ¼ ðj; ix; iy; mÞ, where j ¼ 0; Jmax � 1 denotes the scale 2�ðjþ1Þ, ðix; iyÞ ¼ 0; . . . ; 2j � 1 the position,

and m ¼ 1; 2; 3 the three directions of the two-dimensional wavelets.

The test functions yl are defined as solutions of the linear part of Eq. (10):

ðgI � nr2Þ yl ¼ cl, (12)

which are computed in a preprocessing step for each scale only. This avoids assembling the stiffness matrix and solving

a linear equation at each time step. The functions y, called vaguelettes, are explicitly calculated in Fourier space and

have similar localization properties as wavelets (Fröhlich and Schneider, 1997). The solution of Eq. (10) in wavelet

space there with reduces to a change of basis:

eol ¼ honþ1;cli

¼
4

3
gon �

1

3
gon�1 � r � ðo�ðu�ÞÞ � r �

1

Z
wðu� � upÞ

� �� �
; yl

� �
. ð13Þ

A nonlinear wavelet thresholding is applied in each time step to obtain an adaptive discretization. One retains only

the wavelet coefficients eol whose absolute value is above a given threshold � ¼ �0
ffiffiffiffi
Z

p
, where �0 is a constant and

Z ¼ 1
2

R
joðxÞj2 dx is the total enstrophy. For the next time step the index coefficient set (which addresses each coefficient

in wavelet space) is determined by adding neighbours to the retained wavelet coefficients. Consequently, only those

coefficients ~o in Eq. (13) belonging to this extrapolated index set are computed using the adaptive vaguelette

decomposition (Fröhlich and Schneider, 1997). The nonlinear term �r � ðo�ðu�ÞÞ � r � ½ð1=ZÞwðu� � upÞ� is evaluated

by partial collocation on a locally refined grid (Schneider and Farge, 2002), as illustrated in Fig. 1. We find that only

10 908 out of 65 536 wavelet coefficients, i.e. 16:6%, are used for the computation.

The vorticity o� is reconstructed in physical space on an adaptive grid from its wavelet coefficients eo% using the

adaptive wavelet reconstruction algorithm (Fröhlich and Schneider, 1997). From the adaptive vaguelette decomposition

with y ¼ ðr2Þ
�1c, we solve r2C� ¼ o� to get the stream function eC�

and reconstruct C� on a locally refined grid. By

means of centered finite differences of fourth order we compute ro�, u� ¼ ð�qyC�; qxC�Þ and r � ½ð1=ZÞwðu� � upÞ� on

the adaptive grid. Subsequently, the nonlinear term is summed up pointwise, and finally Eq. (13) is solved using the

adaptive vaguelette decomposition.
3. Numerical results

In this section, we compute the transient flow behaviour in tube bundles at Re ¼ 200. We consider either circular,

square or double-cruciform cross-sections for different angles of attack, i.e., a ¼ 0�, corresponding to in-line bundles,

and a ¼ 30�; 45� corresponding to staggered bundles. These configurations are frequently used for cross-flow heat

exchangers and static mixers. For the different cases we show flow visualizations of instantaneous vorticity fields o and

we plot the time evolution of lift and drag coefficients.
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3.1. Tubes with circular cross-section

In Fig. 2 we sketch the flow configuration for bundles of tubes with a circular cross-section where a is the angle of

attack of the free-stream velocity V1. The geometry is characterized by the pitch to diameter ratio P=D, where D

denotes the tube diameter and P the bundle pitch. In industrial applications the ratio is typically in the range between

1.3 and 2. We define a Reynolds number based on the tube’s diameter and the free-stream velocity, i.e., Re ¼ jV1jD=n.
In the present simulations we take D ¼ 1, P ¼ 2, and a ¼ 0�; 30� and 45�, corresponding to an in-line, or two

staggered arrangements, respectively. The modulus of the free–stream velocity jV1j is normalized to one and the time

unit is t ¼ P=jV1j. Note that the flows are impulsively started by imposing the free–stream velocity V1 at t ¼ 0t.
Hence, several time units are required before the flows reach a so-called stationary regime.

The spatial resolution is Nx ¼ Ny ¼ 256 which guarantees at least four grid points within the boundary layer. The

boundary layer thickness d is evaluated using Prandtl’s wall law, i.e., d / 1=
ffiffiffiffiffiffi
Re

p
.

In Fig. 3 we show snapshots of the vorticity field at t ¼ 10t for three different angles on attack which exhibit different
flow behaviours. The in-line configuration, i.e., a ¼ 0�, (Fig. 3, top, left), presents four horizontal shear layers which are

stable. After a short transition phase, the flow becomes stationary as reflected by a constant drag coefficient (Fig. 4,

left). In this case we observe that the flow remains symmetric which is consistent with the vanishing lift coefficient. For

the staggered configurations a ¼ 30� and 45� we see much stronger production of vorticity at the tubes. A shear layer is
P

V D8

α

Fig. 2. Sketch of the flow configuration: tube bundles with tube pitch P, tube diameter D and pitch to diameter ratio P=D (which is

typically between 1.3 and 2).

Fig. 1. Adaptive wavelet computation of a flow past a tube bundle with circular cross-section at Re ¼ 200 for a ¼ 30�. Left:

instantaneous vorticity at t ¼ 5 t with maximal resolution Nx ¼ Ny ¼ 256 and Z ¼ 10�3. Right: corresponding adaptive grid.
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Fig. 3. Flow past tube bundles with circular cross-section at Re ¼ 200 with Nx ¼ Ny ¼ 256 and Z ¼ 10�3. Vorticity fields at t ¼ 10t
for three angles of incidence, a ¼ 0�; 30�; 45�.
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thus formed, which becomes unstable, and rolls up into vortices which are periodically shed. This is confirmed by the

time evolution of lift and drag coefficients. For a ¼ 30� both coefficients oscillate with a period of 1:2t, while for

a ¼ 45� drag and lift coefficients oscillate with a wavelength of 0:6t and 1:1t, respectively (Fig. 4, Table 1). Note that
these vortex shedding frequencies agree reasonably well with the reported experimental values of Ziada and Oengören

(1992) and numerical simulation of Beale and Spalding (1999).

3.2. Tubes with square cross-section

We now consider a bundle of tubes with square cross-section at Re ¼ 200 for three angles of incidence

a ¼ 0�; 30�; 45�. The main difference with the previous case is that here the point of separation of the boundary layer is

always located at the corner of the tubes, while for circular tubes its location varies with the Reynolds number and the

angle of incidence. We also observe that the vorticity production is increased by a factor of 4 with respect to the circular

case.

For the in-line geometry (a ¼ 0�) we find in both cases a similar behaviour, again four parallel shear layers are being

formed (Fig. 5, top, left), and the flow becomes stationary after a transition phase up to t ¼ 5t. Hence the drag forces
are constant and the lift coefficient vanishes (Fig. 6). The flows in the staggered geometries (a ¼ 30�; 45�) exhibit, like
for the circular tubes, the formation of vortices which are however less pronounced (Fig. 5, top, right and bottom, left).

For a ¼ 45� we also see the striking symmetry of the flow, which is broken at later times, around t ¼ 6 t (cf. Fig. 6). For
a ¼ 30� and 45� we observe time oscillations of the drag coefficients, with period 1t and 0:5t, respectively. For a ¼ 30�
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Fig. 4. Flow past tube bundles with circular cross-section at Re ¼ 200 for a ¼ 0�; 30�; 45�. Time evolution of drag (top) and lift

(bottom) coefficients.

Table 1

Summary of drag and lift coefficients and their corresponding oscillation wavelength Dt for the different flow configurations

Cross-section Circle Square Cruciform

Angle of attack 0� 30� 45� 0� 30� 45� 0� 30� 45�

Drag

Mean value 0.7 4.2 3.0 0.9 14.2 18.8 4.2 8.7 7.2

Minimum value 0 2.7 0.13 0 7.3 8.2 0 7.55 7.05

Maximum value 0 6.6 7.3 0 22.1 22.2 0 9.85 7.35

Dt 0 1.2 0.6 0 1/0.35 0.5 0 1.3 0.7

Lift

Mean value 0 0.5 0 0 3.0 0 0 5.2 0

Minimum value 0 �2.6 �7.0 0 �20 �20 0 �11 �11

Maximum value 0 5.7 7.0 0 23 32 0 19 11

Dt 0 1.2 1.2 0 1 0.5 0 1.2 1.4

K. Schneider, M. Farge / Journal of Fluids and Structures 20 (2005) 555–566 561
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Fig. 5. Flow past tube bundles with square cross-section at Re ¼ 200 with Nx ¼ Ny ¼ 256 and Z ¼ 10�3. Vorticity fields at t ¼ 6t for
three angles of incidence, a ¼ 0�; 30�; 45�.
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we also see a superposition of secondary oscillations with period 0:35t. We also notice an increase of mean drag forces

by a factor of six compared to the circular tubes.

3.3. Tubes with double-cruciform shape

We now consider a bundle of tubes with double-cruciform shape (Fig. 7), again at Re ¼ 200, for three different angles

of incidence a ¼ 0�; 30�; 45�. The locations where the boundary layer detaches are at the corners of the crosses, which
depends on the angle of incidence. For the in-line geometry (a ¼ 0�) we find a behaviour similar to the cylindrical and

square shaped tubes, i.e., the formation of four parallel shear layers (Fig. 8, top left), which become stationary after 5t.
The drag coefficient is much higher (Fig. 9), about 4:15, compared to the cylinder (Cx ¼ 0:7) and the square (Cx ¼ 0:9)
geometry (Table 1). For the staggered geometries (a ¼ 30�; 45�) the shear layers become unstable with vortices shed at

frequencies similar to those observed for the cylindrical geometry (Table 1).
4. Conclusions and perspectives

We presented a numerical scheme for computing the time evolution of two-dimensional flows in complex geometries.

The utilization of a volume penalization method enables us to take into account complex geometries using a mask
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function, without modifying the numerical scheme and the underlying grid. Hence, this technique can be easily

implemented into existing codes and the resulting lift and drag forces can be simply computed by integrating the

penalized velocity over the obstacle’s volume. Furthermore, configurations with moving or even deforming obstacles,

either interacting or noninteracting with the fluid, can be handled efficiently. The precision of the method is determined

by the penalization parameter Z which can be chosen a priori. An explicit time discretization of the penalization term

implies, however, a time step smaller than Z to guarantee stability of the numerical scheme.

We applied the numerical method to different industrially relevant devices, such as heat-exchangers and chemical

reactors. We studied the transient flow behaviour in tube bundles with circular, square and double-cruciform cross-

sections at Reynolds number 200 for different angles of attack. The two-dimensional approximation of the simulation

can be justified in this case due to the dense packing of the tubes. Nevertheless, for higher Reynolds numbers, i.e.,

Re4500, three-dimensional effects become more important and the necessity of detailed three-dimensional simulations

becomes apparent.

Choosing a sufficiently fine grid the numerical scheme is able to resolve the thin shear layers, formed at the tube wall,

which become unstable and lead to the formation of vortices. Depending on the parameters, we observed strong

oscillations of the lift and drag forces exerted by the flow on the tubes. These flow-induced oscillations may damage the

tubes [cf. Axisa et al. (1990)], especially when the vortex shedding frequency is close to the tube’s resonance frequency.
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The adaptive wavelet method presented in this paper allows automatic grid generation and refinement around the

obstacles and also in shear layers which develop during the flow evolution. There with, the number of required grid-

points in the simulations is significantly reduced. We conjecture that the compression rate thus obtained increases with

the Reynolds number.
Fig. 8. Flow past tube bundles with double-cruciform cross-section at Re ¼ 200 with Nx ¼ Ny ¼ 256 and Z ¼ 10�3. Vorticity fields at

t ¼ 6t for three angles of incidence, a ¼ 0�; 30�; 45�.

Fig. 7. Sketch of the flow configuration for tubes with double-cruciform shape: tube bundles with tube pitch P, tube diameter D and

pitch to diameter ratio P=D (which is typically between 1.3 and 2).
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In future work we will extend the penalization scheme to compute fluid–structure interaction in three-dimensional

flows and perform computations at high Reynolds numbers using the coherent vortex simulation (CVS) approach,

proposed by Farge and Schneider (2001).
Acknowledgements

We thank Nicholas Kevlahan for fruitful discussions and for help in developing the pseudo-spectral code. We also

acknowledge financial support from the European program IHP ‘Breaking complexity’ (contract HPRN–CT

2002–00286) and from the fusion program of CEA-Euratom, Cadarache, contract No. V.3258.001.
References

Angot, P., Bruneau, C.-H., Fabrie, P., 1999. A penalisation method to take into account obstacles in viscous flows. Numerische

Mathematik 81, 497–520.



ARTICLE IN PRESS
K. Schneider, M. Farge / Journal of Fluids and Structures 20 (2005) 555–566566
Arquis, E., Caltagirone, J.-P., 1984. Sur les conditions hydrodynamiques au voisinage d’une interface milieu fluide—milieux poreux:
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